Proton-resonance frequency shift MR thermometry is affected by changes in the electrical conductivity of tissue.
نویسندگان
چکیده
The proton-resonance frequency (PRF) shift method of MR thermometry provides an easy and practical means of quantitatively monitoring in vivo temperatures for MR image-guided thermal-coagulation therapy. However, reported discrepancies in the numerical value of the PRF-thermal coefficient persist, when measured in a variety of experimental conditions and in different tissue types, both ex vivo and in vivo. In this report, a potential source of variation in the PRF-shift method of thermometry is identified that manifests as a constant incremental phase shift per unit change in temperature that is independent of the echo-time setting, when constructing temperature-sensitive phase images from a gradient-echo pulse sequence. It is proposed that this confounding phase-shift offset arises from thermally induced changes in the electrical conductivity of the material. To this end, it is demonstrated that the MR-derived temperature changes could be in error by as much as 28%, as measured from a simple calibration experiment on freshly excised cow liver. A simple method of overcoming this phase-shift offset is described.
منابع مشابه
Improved k-space-based MR thermometry by joint PRF phase shift and T1/T2* attenuation estimation
Background/introduction MR temperature mapping based on the proton resonance frequency (PRF) shift is used in MR-guided focused ultrasound procedures for dosimetry and safety monitoring. While conventional PRF-shift thermometry is based on calculating a phase difference between two reconstructed MR images, Gaur et al [1,2] have recently described two algorithms that estimate temperatureinduced ...
متن کاملSSFP-based MR thermometry.
Of the various techniques employed to quantify temperature changes by MR, proton resonance frequency (PRF) shift-based phase-difference imaging (PDI) is the most accurate and widely used. However, PDI is associated with various artifacts. Motivated by these limitations, we developed a new method to monitor temperature changes by MRI using the balanced steady-state free precession (balanced-SSFP...
متن کاملMRI thermometry in phantoms by use of the proton resonance frequency shift method: application to interstitial laser thermotherapy.
In this work the temperature dependence of the proton resonance frequency was assessed in agarose gel with a high melting temperature (95 degrees C) and in porcine liver in vitro at temperatures relevant to thermotherapy (25-80 degrees C). Furthermore, an optically tissue-like agarose gel phantom was developed and evaluated for use in MRI. The phantom was used to visualize temperature distribut...
متن کاملReal-time MR-thermometry and dosimetry for interventional guidance on abdominal organs.
The use of proton resonance frequency shift-based magnetic resonance (MR) thermometry for interventional guidance on abdominal organs is hampered by the constant displacement of the target due to the respiratory cycle and the associated thermometry artifacts. Ideally, a suitable MR thermometry method should for this role achieve a subsecond temporal resolution while maintaining a precision comp...
متن کاملVolumetric thermometry with proton resonance
Proton resonance frequency (PRF), by which it precesses in the magnetic field, alters due to change in temperature, which can be detected with magnetic resonance imaging (MRI). MRI scanner uses protons’ nuclear magnetic resonance phenomenon. The target is first excited with a radio frequency pulse, then it’s relaxation to initial stage is observed. Parts with different temperatures can be mappe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Magnetic resonance in medicine
دوره 43 1 شماره
صفحات -
تاریخ انتشار 2000